VII. Experimental Researches in Electricity.—Twenty-third Series. By Michael Faraday, Esq., D.C.L., F.R.S., Fullerian Prof. Chem. Royal Institution, Foreign Associate of the Acad. Sciences, Paris, Ord. Boruss. Pour le Mérite, Eq., Memb. Royal and Imp. Acadd. of Sciences, Petersburgh, Florence, Copenhagen, Berlin, Göttingen, Modena, Stockholm, Munich, Bruxelles, Vienna, Bologna, &c. &c. Received January 1,-Read March 7 and 14, 1850. § 29. On the polar or other condition of diamagnetic bodies. 2640. Four years ago I suggested that all the phenomena presented by diamagnetic bodies, when subjected to the forces in the magnetic field, might be accounted for by assuming that they then possessed a polarity the same in kind as, but the reverse in direction of, that acquired by iron, nickel and ordinary magnetic bodies under the same circumstances (2429. 2430.). This view was received so favourably by Plücker, Reich and others, and above all by W. Weber*, that I had great hopes it would be confirmed; and though certain experiments of my own (2497.) did not increase that hope, still my desire and expectation were in that direction. 2641. Whether bismuth, copper, phosphorus, &c., when in the magnetic field, are polar or not, is however an exceedingly important question; and very essential and great differences, in the mode of action of these bodies under the one view or the other, must be conceived to exist. I found that in every endeavour to proceed by induction of experiment from that which is known in this department of science to the unknown, so much uncertainty, hesitation and discomfort arose from the unsettled state of my mind on this point, that I determined, if possible, to arrive at some experimental proof either one way or the other. This was the more needful, because of the conclusion in the affirmative to which Weber had come in his very philosophical paper; and so important do I think it for the progress of science, that, in those imperfectly developed regions of knowledge, which form its boundaries, our conclusions and deductions should not go far beyond, or at all events not aside from the results of experiment (except as suppositions), that I do not hesitate to lay my present labours, though they arrive at a negative result, before the Royal Society. 2642. It appeared to me that many of the results which had been supposed to indicate a polar condition, were only consequences of the law that diamagnetic bodies tend to go from stronger to weaker places of action (2418.); others again appeared to have their origin in induced currents (26. 2338.); and further consideration seemed ^{*} Poggendorff's Annalen, January 7, 1848, or Taylor's Scientific Memoirs, v. p. 477. to indicate that the differences between these modes of action and that of a real polarity, whether magnetic or diamagnetic, might serve as a foundation on which to base a mode of investigation, and also to construct an apparatus that might give useful conclusions and results in respect of this inquiry. For, if the polarity exists it must be in the particles and for the time permanent, and therefore distinguishable from the momentary polarity of the mass due to induced temporary currents; and it must also be distinguishable from ordinary magnetic polarity by its contrary direction. 2643. A straight wooden lever, 2 feet in length, was fixed by an axis at one end, and by means of a crank and wheel made to vibrate in a horizontal plane, so that its free extremity passed to and fro through about 2 inches. Cylinders or cores of metal or other substances, $5\frac{1}{2}$ inches long and three-quarters of an inch diameter, were fixed in succession to the end of a brass rod 2 feet long, which itself was attached at the other end to the moving extremity of the lever, so that the cylinders could be moved to and fro in the direction of their length through the space of 2 inches. A large cylinder electro-magnet was also prepared (2191.), the iron core of which was 21 inches long and 1.7 inch in diameter; but one end of this core was made smaller for the length of 1 inch, being in that part only 1 inch in diameter. 2644. On to this reduced part was fixed a hollow helix consisting of 516 feet of fine covered copper wire: it was 3 inches long, 2 inches external diameter, and 1 inch internal diameter: when in its place, 1 inch of the central space was occupied by the reduced end of the electro-magnet core which carried it; and the magnet and helix were both placed concentric with the metal cylinder above mentioned, and at such a distance that the latter, in its motion, would move within the helix in the direction of its axis, approaching to and receding from the electro-magnet in rapid or slow succession. The least and greatest distances of the moving cylinder from the magnet during the journey were one-eighth of an inch and 2·2 inches. The object of course was to observe any influence upon the experimental helix of fine wire which the metal cylinders might exert, either whilst moving to or from the magnet, or at different distances from it*. 2645. The extremities of the experimental helix wire were connected with a very delicate galvanometer, placed 18 or 20 feet from the machine, so as to be unaffected directly by the electro-magnet; but a commutator was interposed between them. This commutator was moved by the wooden lever (2643.), and as the electric currents which would arrive at it from the experimental helix, in a complete cycle of motion or to and fro action of the metal cylinder (2643.), would consist of two contrary portions, so the office of this commutator was, sometimes to take up these portions in succession and send them on in one consistent current to the galvanometer, and at ^{*} It is very probable that if the metals were made into cylinders shorter, but of larger diameter than those described above, and used with a corresponding wider helix, better results than those I have obtained would be acquired. other times to oppose them and to neutralize their result; and therefore it was made adjustible, so as to change at any period of the time or part of the motion. 2646. With such an arrangement as this, it is known that, however powerful the magnet, and however delicate the other parts of the apparatus, no effect will be produced at the galvanometer as long as the magnet does not change in force, or in its action upon neighbouring bodies, or in its distance from, or relation to, the experimental helix; but the introduction of a piece of iron into the helix, or anything else that can influence or be influenced by the magnet, can, or ought to, show a corresponding influence upon the helix and galvanometer. My apparatus I should imagine, indeed, to be almost the same in principle and practice as that of M. Weber (2640.), except that it gives me contrary results. 2647. But to obtain correct conclusions, it is most essential that extreme precaution should be taken in relation to many points which at first may seem unimportant. All parts of the apparatus should have perfect steadiness, and be fixed almost with the care due to an astronomical instrument; for any motion of any portion of it is, from the construction, sure to synchronize with the motion of the commutator; and portions of effect, inconceivably small, are then gathered up and made manifest as a whole at the galvanometer; and thus, without care, errors might be taken for real and correct results. Therefore, in my arrangements, the machine (2643, &c.), the magnet and helix, and the galvanometer stood upon separate tables, and these again upon a stone floor laid upon the earth; and the table carrying the machine was carefully strutted to neighbouring stone-work. 2648. Again, the apparatus should itself be perfectly firm and without shake in its motion, and yet easy and free. No iron should be employed in any of the moving parts. I have springs to receive and convert a portion of the momentum of the whole at the end of the to and fro journey; but it is essential that these should be of hammered brass or copper. 2649. It is absolutely necessary that the cylinder or core in its motion should not in the least degree disturb or shake the experimental helix and the magnet. Such a shake may easily take place and yet (without much experience) not be perceived. It is important to have the cores of such bodies as bismuth, phosphorus, copper, &c., as large as may be, but I have not found it safe to have less than one-eighth of an inch of space between them and the interior of the experimental helix. In order to float, as it were, the core in the air, it is convenient to suspend it in the bight or turn of a fine copper wire passing once round it, the ends of which rise up, and are made fast to two fixed points at equal heights but wide apart, so that the wire has a V form. This suspension keeps the core parallel to itself in every part of its motion. 2650. The magnet, when excited, is urged by an electric current from five pairs of Grove's plates, and is then very powerful. When the battery is not connected with it, it still remains a magnet of feeble power, and when thus employed may be referred to as in the residual state. If employed in the residual state, its power may for the time be considered constant, and the experimental helix may at any moment be connected with the galvanometer without any current appearing there. But if the magnet be employed in the excited state, certain important precautions are necessary; for upon connecting the magnet with the battery and then connecting the experimental helix with the galvanometer, a current will appear at the latter, which will, in certain cases, continue for a minute or more, and which has the appearance of being derived at once from that of the battery. It is not so produced, however, but is due to the time occupied by the iron core in attaining its maximum magnetic condition (2170. 2332.), during the whole of which it continues to act upon the
experimental helix, producing a current in it. This time varies with several circumstances, and in the same electro-magnet varies especially with the period during which the magnet has been out of use. When first employed, after two or three days' rest, it will amount to eighty or ninety seconds, or more. On breaking battery contact and immediately renewing it, the effect will be repeated, but occupy only twenty or thirty seconds. a third intermission and renewal of the current, it will appear for a still shorter period; and when the magnet has been used at short intervals for some time, it seems capable of receiving its maximum power almost at once. In every experiment it is necessary to wait until the effect is shown by the galvanometer to be over; otherwise the last remains of such an effect might be mistaken for a result of polarity, or some peculiar action of the bismuth or other body under investigation. 2651. The galvanometer employed was made by Ruhmkorff and was very sensible. The needles were strengthened in their action and rendered so nearly equal, that a single vibration to the right or to the left occupied from sixteen to twenty seconds. When experimenting with such bodies as bismuth or phosphorus, the place of the needle was observed through a lens. The perfect communication in all parts of the circuit was continually ascertained by a feeble thermo-electric pair, warmed by the fingers. This was done also for every position of the commutator, where the film of oxide formed on any part by two or three days' rest was quite sufficient to intercept a feeble current. 2652. In order to bring the phenomena afforded by magnetic and diamagnetic bodies into direct relation, I have not so much noted the currents produced in the experimental helix, as the effects obtained at the galvanometer. It is to be understood, that the standard of deviation, as to direction, has always been that produced by an iron wire moving in the same direction at the experimental helix, and with the same condition of the commutator and connecting wires, as the piece of bismuth or other body whose effects were to be observed and compared. ^{2653.} A thin glass tube, of the given size (2643.), $5\frac{1}{2}$ by $\frac{3}{4}$ inches, was filled with a saturated solution of protosulphate of iron, and employed as the experimental core: the velocity given to the machine at this and all average times of experiment was such as to cause five or six approaches and withdrawals of the core in one second; yet the solution produced no sensible indication at the galvanometer. A piece of magnetic glass tube (2354.), and a core of foolscap paper, magnetic between the poles of the electro-magnet, were equally inefficient. A tube filled with small crystals of protosulphate of iron caused the needle to move about 2°, and cores formed out of single large crystals, or symmetric groups of crystals of sulphate of iron, produced the same effect. Red oxide of iron (colcothar) produced the least possible effect. Iron scales and metallic iron (the latter as a thin wire) produced large effects. 2654. Whenever the needle moved, it was consistent in its direction with the effect of a magnetic body; but in many cases, with known magnetic bodies, the motion was little or none. This proves that such an arrangement is by no means so good a test of magnetic polarity as the use of a simple or an astatic needle. This deficiency of power in that respect does not interfere with its ability to search into the nature of the phenomena that appear in the experiments of Weber, Reich and others. 2655. Other metals than iron were now employed and with perfect success. If they were magnetic, as nickel and cobalt, the deflection was in the same direction as for iron. When the metals were diamagnetic, the deflection was in the contrary direction; and for some of the metals, as copper, silver and gold, it amounted to 60° or 70°, which was permanently sustained as long as the machine continued to work. But the deflection was not the greatest for the most diamagnetic substances, as bismuth or antimony, or phosphorus; on the contrary, I have not been able to assure myself, up to this time, that these three bodies can produce any effect. Thus far the effect has been proportionate to the conducting power of the substance for electricity. Gold, silver and copper have produced large deflections, lead and tin less. Platina very little. Bismuth and antimony none. 2656. Hence there was every reason to believe that the effects were produced by the currents induced in the mass of the moving metals, and not by any polarity of their particles. I proceeded therefore to test this idea by different conditions of the cores and the apparatus. 2657. In the first place, if produced by induced currents, the great proportion of these would exist in the part of the core near to the dominant magnet, and but little in the more distant parts; whereas in a substance like iron, the polarity which the whole assumes makes length a more important element. I therefore shortened the core of copper from $5\frac{1}{2}$ inches (2643.) to 2 inches, and found the effect not sensibly diminished; even when 1 inch long it was little less than before. On the contrary, when a fine iron wire, $5\frac{1}{2}$ inches in length, was used as core, its effects were strong; when the length was reduced to 2 inches, they were greatly diminished; and again, with a length of 1 inch, still further greatly reduced. It is not difficult to construct a core of copper, with a fine iron wire in its axis, so that when above a certain length it should produce the effects of iron, and beneath that length the effects of copper. 2658. In the next place, if the effect were produced by induced currents in the mass (2642.), division of the mass would stop these currents and so alter the effect; whereas if produced by a true diamagnetic polarity, division of the mass would not affect the polarity seriously, or in its essential nature (2430.). Some copper filings were therefore digested for a few days in dilute sulphuric acid to remove any adhering iron, then well-washed and dried, and afterwards warmed and stirred in the air, until it was seen by the orange colour that a very thin film of oxide had formed upon them: they were finally introduced into a glass tube (2653.) and employed as a core. It produced no effect whatever, but was now as inactive as bismuth. 2659. The copper may however be divided so as either to interfere with the assumed currents or not, at pleasure. Fine copper wire was cut up into lengths of $5\frac{1}{2}$ inches, and as many of these associated together as would form a compact cylinder three-quarters of an inch in diameter (2643.); it produced no effect at the galvanometer. Another copper core was prepared by associating together many discs of thin copper plate, three-quarters of an inch in diameter, and this affected the galvanometer, holding its needle 25° or 30° from zero. 2660. I made a solid helix cylinder, three-quarters of an inch in diameter and 2 inches long, of covered copper wire, one-sixteenth of an inch thick, and employed this as the experimental core. When the two ends of its wire were unconnected, there was no effect upon the experimental helix, and consequently none at the galvanometer; but when the ends were soldered together, the needle was well affected. In the first condition, the currents, which tended to be formed in the mass of moving metal, could not exist because the metal circuit was interrupted; in the second they could, because the circuit was not interrupted; and such division as remained did not interfere to prevent the currents. 2661. The same results were obtained with other metals. A core cylinder of gold, made of half-sovereigns, was very powerful in its effect on the galvanometer. A cylinder of silver, made of sixpenny pieces, was very effectual; but a cylinder made of precipitated silver, pressed into a glass tube as closely as possible, gave no indications of action whatever. The same results were obtained with disc cylinders of tin and lead, the effects being proportionate to the condition of tin and lead as bad conductors (2655.). 2662. When iron was divided, the effects were exactly the reverse in kind. It was necessary to use a much coarser galvanometer and apparatus for the purpose; but that being done, the employment of a solid iron core, and of another of the same size or weight formed of lengths of fine iron wire (2659.), showed that the division had occasioned no inferiority in the latter. The excellent experimental researches of Dove * on the electricity of induction, will show that this ought to be the case. 2663. Hence the result of division in the diamagnetic metals is altogether of a nature to confirm the conclusion, that the effects produced by them are due to in- ^{*} TAYLOR'S Scientific Memoirs, v. p. 129. I do not see a date to the paper. duced currents moving through their masses, and not to any polarity correspondent in its general nature (though opposed in its direction) to that of iron. 2664. In the third place (2656.), another and very important distinction in the actions of a diamagnetic metal may be experimentally established according as they may be due either to a true polarity, or merely to the presence of temporary induced currents; and as for the consideration of this point diamagnetic and magnetic polarity are the same, the point may best be considered, at present, in relation to iron. 2665. If a core of any kind be advanced towards the dominant magnet and withdrawn from it by a motion of uniform velocity, then a complete journey or to and from action might be divided into four parts; the to, the stop after it; the from, and the stop succeeding that. If a core of iron make this journey, its end towards the dominant magnet becomes a pole, rising in force until at the nearest distance, and falling in force until at the greatest distance. Both
this effect, and its progression inwards and outwards, cause currents to be induced in the surrounding helix, and these currents are in one direction as the core advances, and in the contrary direction as it recedes. In reality, however, the iron does not travel with a constant velocity; for, because of the communication of motion from a revolving crank at the machine (2643.), it, in the to part of the journey, gradually rises from a state of rest to a maximum velocity, which is half-way, and then as gradually sinks to rest again near the magnet:—and the from part of the journey undergoes the same variations. the maximum effect upon the surrounding experimental helix depends upon the velocity conjointly with the intensity of the magnetic force in the end of the core, it is evident that it will not occur with the maximum velocity, which is in the middle of the to or from motion; nor at the stop nearest to the dominant magnet, where the core end has greatest magnetic force, but somewhere between the two. Nevertheless, during the whole of the advance, the core will cause a current in the experimental - helix in one direction, and during the whole of the recession it will cause a current in the other direction. 2666. If diamagnetic bodies, under the influence of the dominant magnet, assume also a polar state, the difference between them and iron being only that the poles of like names or forces are changed in place (2429. 2430.), then the same kind of action as that described for iron would occur with them; the only difference being, that the two currents produced would be in the reverse direction to those produced by iron. 2667. If a commutator, therefore, were to be arranged to gather up these currents, either in the one case or the other, and send them on to the galvanometer in one consistent current, it should change at the moments of the two *stops* (2665.), and then would perform such duty perfectly. If, on the other hand, the commutator should change at the times of maximum velocity or maximum intensity, or at two other times equidistant either from the one *stop* or from the other, then the parts of the opposite currents intercepted between the changes would exactly neutralize each other, and no final current would be sent on to the galvanometer. MDCCCL. 2 A 2668. Now the action of the iron is, by experiment, of this nature. If an iron wire be simply introduced or taken out of the experimental helix with different conditions of the commutator, the results are exactly those which have been stated. If the machine be worked with an iron wire core, the commutator changing at the stops (2665.), then the current gathered up and sent on to the galvanometer is a maximum; if the commutator change at the moments of maximum velocity, or at any other pair of moments equidistant from the one stop or the other, then the current at the commutator is a minimum, or 0. 2669. There are two or three precautions which are necessary to the production of a pure result of this kind. In the first place, the iron ought to be soft and not previously in a magnetic state. In the next, an effect of the following kind has to be guarded against. If the iron core be away from the dominant magnet at the beginning of an experiment, then, on working the machine, the galvanometer will be seen to move in one direction for a few moments, and afterwards, notwithstanding the continued action of the machine, will return and gradually take up its place at 0°. If the iron core be at its shortest distance from the dominant magnet at the beginning of the experiment, then the galvanometer needle will move in the contrary direction to that which it took before, but will again settle at 0°. These effects are due to the circumstance, that, when the iron is away from the dominant magnet, it is not in so strong a magnetic state, and when at the nearest to it is in a stronger state, than the mean or average state, which it acquires during the continuance of an experiment; and that in rising or falling to this average state, it produces two currents in contrary directions, which are made manifest in the experiments described. These existing only for the first moments, do, in their effects at the galvanometer, then appear, producing a vibration which gradually passes away. 2670. One other precaution I ought to specify. Unless the commutator changes accurately at the given points of the journey, a little effect is gathered up at each change, and may give a permanent deflection of the needle in one direction or the other. The tongues of my commutator, being at right angles to the direction of motion and somewhat flexible, dragged a little in the to and from parts of the journey: in doing this they approximated, though only in a small degree, to that which is the best condition of the commutator for gathering up (and not opposing) the currents; and a deflection to the right or left appeared (2677.). Upon discovering the cause and stiffening the tongues so as to prevent their flexure, the effect disappeared, and the iron was perfectly inactive. 2671. Such therefore are the results with an iron core, and such would be the effects with a copper or bismuth core if they acted by a diamagnetic polarity. Let us now consider what the consequences would be if a copper or bismuth core were to act by currents, induced for the time, in its moving mass, and of the nature of those suspected (2642.). If the copper cylinder moved with uniform velocity (2665.), then currents would exist in it, parallel to its circumference, during the whole time of its motion; and these would be at their maximum force just before and just after the to or inner stop, for then the copper would be in the most intense parts of the magnetic field. The rising current of the copper core for the in portion of the journey would produce a current in one direction in the experimental helix, the stopping of the copper and consequent falling of its current would produce in the experimental helix a current contrary to the former; the first instant of motion outwards in the core would produce a maximum current in it contrary to its former current, and producing in the experimental helix its inductive result, being a current the same as the last there produced; and then, as the core retreated, its current would fall, and in so doing and by its final stop, would produce a fourth current in the experimental helix, in the same direction as the first. 2672. The four currents produced in the experimental helix alternate by twos, *i.e.* those produced by the falling of the first current in the core and the rising of the second and contrary current, are in one direction. They occur at the instant before and after the stop at the magnet, *i.e.* from the moment of maximum current (in the core) before, to the moment of maximum current after, the stop; and if that stop is momentary, they exist only for that moment, and should during that brief time be gathered up by the commutator. Those produced in the experimental helix during the falling of the second current in the core and the rising of a third current (identical with the first) in the return of the core to the magnet, are also the same in direction, and continue from the beginning of the retreat to the end of the advance (or from maximum to maximum) of the core currents, *i.e.* for almost the whole of the core journey; and these, by its change at the maximum moments, the commutator should take up and send on to the galvanometer. 2673. The motion however of the core is not uniform in velocity, and so, sudden in its change of direction, but, as before said (2665.), is at a maximum as respects velocity in the middle of its approach to and retreat from the dominant magnet; and hence a very important advantage. For its stop may be said to commence immediately after the occurrence of the maximum velocity; and if the lines of magnetic force were equal in position and power there to what they are nearer to the magnet, the contrary currents in the experimental helix would commence at those points of the journey; but, as the core is entering into a more intense part of the field, the current in it still rises though the velocity diminishes, and the consequence is, that the maximum current in it neither occurs at the place of greatest velocity, nor of greatest force, but at a point between the two. This is true both as regards the approach and the recession of the core, the two maxima of the currents occurring at points equidistant from the place of rest near the dominant magnet. 2674. It is therefore at these two points that the commutator should change, if adjusted to produce the greatest effect at the galvanometer by the currents excited in the experimental helix, through the influence of, or in connection with, currents of induction produced in the core; and experiment fully justifies this conclusion. If the length of the journey from the stop out to the stop in, which is 2 inches (2643. 2644.), be divided into 100 parts, and the dominant magnet be supposed to be on the right-hand, then such an expression as the following, 50|50, may represent the place where the commutator changes, which in this illustration would be midway in the to and from motion, or at the places of greatest velocity. 2675. Upon trial of various adjustments of the commutator, I have found that from 77|23 to 88|12, gave the best result with a copper core. On the whole, and after many experiments, I conclude that with the given strength of electro-magnet, distance of the experimental core when at the nearest from the magnet, length of the whole journey, and average velocity of the machine, 86|14 may represent the points where the induced currents in the core are at a maximum and where the commutator ought to change. 2676. From what has been said before (2667.), it will be seen that both in theory and experiment these are the points in which the effect of any polarity, magnetic or diamagnetic, would be
absolutely nothing. Hence the power of submitting by this machine metals and other bodies to experiment, and of eliminating the effects of magnetic polarity, of diamagnetic polarity, and of inductive action, the one from the others: for either by the commutator or by the direction of the polarity, they can be separated; and further, they can also be combined in various ways for the purpose of elucidating their joint and separate action. 2677. For let the arrows in the diagram represent the to and from journey, and the intersections of the lines a, b or c, d, &c. the periods in the journey when the commutator changes (in which case c, d will correspond to 50|50, and e, f to 86|14), then a, b will represent the condition of the commutator for the maximum effect of iron or any other polar body. If the line a, b be gradually revolved until parallel to c, d, it will in every position indicate points of commutator change, which will give the iron effect at the galvanometer by a deflection of the needle always in the same direction; it is only when the ends a and b have passed the points c and d, either above or below, that the direction of the deflection will change for iron. But the line a, b indicates those points for the commutator with which no effect will be produced on the galvanometer by the induction of currents in the mass of the core. If the line be inclined in one direction, as i, k, then these currents will produce a deflection at the galvanometer on one side; if it be inclined in the other direction, as l, m, then the deflection will be on the other side. Therefore the effects of these induced currents may be either combined with, or opposed to, the effects of a polarity, whether it be magnetic or diamagnetic. 2678. All the metals before mentioned (2655.), namely, gold, silver, copper, tin, lead, platina, antimony and bismuth, were submitted to the power of the electro-magnet under the best adjustment (2675.) of the commutator. The effects were stronger than before, being now at a maximum, but in the same order; as regarded antimony and bismuth, they were very small, amounting to not more than half a degree, and may very probably have been due to a remainder of irregular action in some part of the apparatus. All the experiments with the divided cores (2658, &c.) were repeated with the same results as before. Phosphorus, sulphur and gutta percha did not, either in this or in the former state of the commutator, give any indication of effect at the galvanometer. 2679. As an illustration of the manner in which this position of the commutator caused a separation of the effects of copper and iron, I had prepared a copper cylinder core 2 inches in length having an iron wire in its axis, and this being employed in the apparatus gave the pure effect of the copper with its induced currents. Yet this core, as a whole, was highly magnetic to an ordinary test-needle; and when the two changes of the commutator were not equidistant from the one stop or the other (2670, 2677.), the iron effect came out powerfully, overruling the former and producing very strong contrary deflections at the needle. The platinum core which I have used is an imperfect cylinder, 2 inches long and 0.62 of an inch thick: it points magnetically between the poles of a horseshoe electro-magnet (2381.), making a vibration in less than a second, but with the above condition of the commutator (2675.) gives 4° of deflection due to the induced currents, the magnetic effect being annulled or thrown out. 2680. Some of the combined effects produced by oblique position of the commutator points were worked out in confirmation of the former conclusions (2677.). When the commutator was so adjusted as to combine any polar power which the bismuth, as a diamagnetic body, might possess, with any conducting power which would permit the formation of currents by induction in its mass (2676.), still the effects were so minute and uncertain as to oblige me to say that, experimentally, it is without either polar or inductive action. 2681. There is another distinction which may usefully be established between the effects of a true sustainable polarity, either magnetic or diamagnetic, and those of the transient induced currents dependent upon time. If we consider the resistance in the circuit, which includes the experimental helix and the galvanometer coil, as nothing, then a magnetic pole of constant strength passed a certain distance into the helix, would produce the same amount of current electricity in it, whether the pole were moved into its place by a quick or a slow motion. Or if the iron core be used (2668.) the same result is produced, provided, in any alternating action, the core is left long enough at the extremities of its journey to acquire, either in its quick or slow alternation, the same state. This I found to be the fact when no commutator nor dominant magnet was used; a single insertion of a weak magnetic pole gave the same deflection, whether introduced quickly or slowly; and when the residual dominant magnet, an iron wire core, and the commutator in its position a, b (2677.) were used, four journeys to and from produced the same effect at the galvanometer when the velocities were as 1:5 or even as 1:10. 2682. When a copper, silver, or gold core is employed in place of the iron, the effect is very different. There is no reason to doubt, that, as regards the core itself, the same amount of electricity is thrown into the form of induced circulating currents within it, by a journey to or from, whether that journey is performed quickly or slowly: the above experiment (2681.) in fact confirms such a conclusion. But the effect which is produced upon the experimental helix is not proportionate to the whole amount of these currents, but to the maximum intensities to which they rise. When the core moves slowly, this intensity is small; when it moves rapidly, it is great, and necessarily so, for the same current of electricity has to travel in the two differing periods of time occupied by the journeys. Hence the quickly moving core should produce a far higher effect on the experimental helix than the slowly moving core; and this also I found to be the fact. 2683. The short copper core was adjusted to the apparatus, and the machine worked with its average velocity until forty journeys to and from had been completed; the galvanometer needle passed 39° west. Then the machine was worked with a greater rapidity, also for forty journeys, and the needle passed through 80° or more west; finally, being worked at a slow rate for the same number of journeys, the needle went through only 21° west. The extreme velocities in this experiment were probably as 1:6; the time in the longest case was considerably less than that of one vibration of the needle (2651.), so that I believe all the force in the slowest case was collected. The needle is very little influenced by the swing or momentum of its parts, because of the deadening effect of the copper plate beneath it, and, except to return to zero, moves very little after the motion of the apparatus ceases. A silver core produced the same results. 2684. These effects of induced currents have a relation to the phenomena of revulsion which I formerly described (2310. 2315. 2338.), being the same in their exciting cause and principles of action, and so the two sets of phenomena confirm and illustrate each other. That the revulsive phenomena are produced by induced currents, has been shown before (2327. 2329. 2336. 2339.); the only difference is, that with them the induced currents were produced by exalting the force of a magnet placed at a fixed distance from the affected metal; whilst in the present phenomena, the force of the magnet does not change, but its distance from the piece of metal does. 2685. So also the same circumstances which affect the phenomena here affect the revulsive phenomena. A plate of metal will, as a whole, be well-revulsed; but if it be divided across the course of the induced currents it is not then affected (2529.). A ring helix of copper wire, if the extremities be unconnected, will not exhibit the phenomena, but if they be connected then it presents them (2660.). 2686. On the whole, the revulsive phenomena are a far better test and indication of these currents than the present effects; especially if advantage be taken of the division of the mass into plates, so as to be analogous, or rather superior, in their action to the disc cylinder cores (2659. 2661.). Platinum, palladium and lead in leaf or foil, if cut or folded into squares half an inch in the side, and then packed regularly together, will show the phenomena of revulsion very well; and that according to the direction of the leaves, and not of the external form. Gold, silver, tin and copper have the revulsive effects thus greatly exalted. Antimony, as I have already shown, exhibits the effect well (2514. 2519.). Both it and bismuth can be made to give evidence of the induced currents produced in them when they are used in thin plates, either single or associated, although, to avoid the influence of the diamagnetic force, a little attention is required to the moments of making and breaking contact between the voltaic battery and the electro-magnet. 2687. Copper, when thus divided into plates, had its revulsive phenomena raised to a degree that I had not before observed. A piece of copper foil was annealed and tarnished by heat, and then folded up into a small square block, half an inch in the side and a quarter of an inch thick, containing seventy-two folds of the metal. This block was suspended by a silk film as before (2248.), and whilst at an angle of 30° or thereabouts with the equatorial line (2252.), the electro-magnet was excited; it immediately advanced or turned until the angle was about 45° or 50°, and then stood still. Upon the interruption of the electric current at the magnet the revulsion came on very strongly, and the block
turned back again, passed the equatorial line, and proceeded on until it formed an angle of 50° or 60° on the other side; but instead of continuing to revolve in that direction as before (2315.), it then returned on its course, again passed the equatorial line, and almost reached the axial position before it stood still. In fact, as a mass, it vibrated to and fro about the equatorial line. 2688. This however is a simple result of the principles of action formerly developed (2329, 2336.). The revulsion is due to the production of induced currents in the suspended mass during the falling of the magnetism of the electro-magnet; and the effect of the action is to bring the axis of these induced currents parallel to the axis of force in the magnetic field. Consequently, if the time of the fall of magnetic force, and therefore of the currents dependent thereon, be greater than the time occupied by the revulsion of the copper block as far as the equatorial line, any further motion of it by momentum will be counteracted by a contrary force; and if this force be strong enough the block will return. The conducting power of the copper and its division into laminæ, tend to set up these currents very readily and with extra power; and the very power which they possess tends to make the time of a vibration so short, that two or even three vibrations can occur before the force of the electro-magnet has ceased to fall any further. The effect of time, both in the rising and falling of power, has been referred to on many former occasions (2170, 2650.), and is very beautifully seen here. ^{2689.} Returning to the subject of the assumed polarity of bismuth, I may and ought to refer to an experiment made by Reich, and described by Weber*, which, if ^{*} TAYLOR'S Scientific Memoirs, v. p. 480. I understand the instruction aright, is as follows: a strong horseshoe magnet is laid upon a table in such a position that the line joining its two poles is perpendicular to the magnetic meridian and to be considered as prolonged on one side; in that line, and near the magnet, is to be placed a small powerful magnetic needle, suspended by cocoon silk, and on the other side of it, the pole of a bar magnet, in such a position and so near, as exactly to counteract the effect of the horseshoe magnet, and leave the needle to point exactly as if both magnets were away. Then a mass of bismuth being placed between the poles of the horseshoe magnet is said to react upon the small magnet needle, causing its deflection in a particular direction, and this is supposed to indicate the polarity of the bismuth under the circumstances, as it has no such action when the magnets are away. A piece of iron in place of the bismuth produces the contrary deflection of the needle. 2690. I have repeated this experiment most anxiously and carefully, but have never obtained the slightest trace of action with the bismuth. I have obtained action with the iron; but in those cases the action was far less than if the iron were applied outside between the horseshoe magnet and the needle, or to the needle alone, the magnets being entirely away. On using a garnet, or a weak magnetic substance of any kind, I cannot find that the arrangement is at all comparable for readiness of indication or delicacy, with the use of a common or an astatic needle, and therefore I do not understand how it could become a test of the polarity of bismuth when these fail to show it. Still I may have made some mistake; but neither by close reference to the description, nor to the principles of polar action, can I discover where. 2691. There is an experiment which PLÜCKER described to me, and which at first seems to indicate strongly the polarity of bismuth. If a bar of bismuth (or phosphorus) be suspended horizontally between the poles of the electro-magnet, it will go to the equatorial position with a certain force, passing, as I have said, from stronger to weaker places of action (2267.). If a bar of iron of the same size be fixed in the equatorial position a little below the plane in which the diamagnetic bar is moving, the latter will proceed to the equatorial position with much greater force than before, and this is considered as due to the circumstance, that, on the side where the iron has N polarity, the diamagnetic body has S polarity, and that on the other side the S polarity of the iron and the N polarity of the bismuth also coincide. 2692. It is however very evident that the lines of magnetic force have been altered sufficiently in their intensity of direction, by the presence of the iron, to account fully for the increased effect. For, consider the bar as just leaving the axial position and going to the equatorial position; at the moment of starting its extremities are in places of stronger magnetic force than before, for it cannot be doubted for a moment that the iron bar determines more force from pole to pole of the electro-magnet than if it were away. On the other hand, when it has attained the equatorial position, the extremities are under a much weaker magnetic force than they were subject to in the same places before; for the iron bar determines downwards upon itself much of that force, which, when it is not there, exists in the plane occupied by the bismuth. Hence, in passing through 90°, the diamagnetic is urged by a much greater difference of intensity of force when the iron is present than when it is away; and hence, probably, the whole additional result. The effect is like many others which I have referred to in magnecrystallic action (2487–2497.), and does not, I think, add anything to the experimental proof of diamagnetic polarity. 2693. Finally, I am obliged to say that I can find no experimental evidence to support the hypothetical view of diamagnetic polarity (2640.), either in my own experiments, or in the repetition of those of Weber, Reich, or others. say that such a polarity does not exist; and I should think it possible that WEBER, by far more delicate apparatus than mine, had obtained a trace of it, were it not that then also he would have certainly met with the far more powerful effects produced by copper, gold, silver, and the better conducting diamagnetics. If bismuth should be found to give any effect, it must be checked and distinguished by reference to the position of the commutator, division of the mass by pulverization, influence of time, It appears to me also, that, as the magnetic polarity conferred by iron or nickel in very small quantity, and in unfavourable states, is far more readily indicated by its effect on an astatic needle, or by pointing between the poles of a strong horseshoe magnet, than by any such arrangement as mine or Weber's or Reich's, so diamagnetic polarity would be much more easily distinguished in the same way, and that no indication of that polarity has as yet reached to the force and value of those already given by Brugmann and myself. 2694. So, at present, the actions represented or typified by iron, by copper and by bismuth, remain distinct; and their relations are only in part made known to us. It cannot be doubted that a larger and simpler law of action than any we are yet acquainted with, will hereafter be discovered, which shall include all these actions at once; and the beauty of Weber's suggestion in this respect was the chief inducement to me to endeavour to establish it. 2695. Though from the considerations above expressed (2693.) I had little hopes of any useful results, yet I thought it right to submit certain magnecrystallic cores to the action of the apparatus. One core was a large group of symmetrically disposed crystals of bismuth (2457.); another a very large crystal of red ferroprussiate of potassa; a third a crystal of calcareous spar; and a fourth and fifth large crystals of protosulphate of iron. These were formed into cylinders of which the first and fourth had the magnecrystallic axes (2479.) parallel to the axis of the cylinder, and the second, third and fifth, had the equatorial direction of force (2594. 2595. 2596.) parallel to the axis of the cylinder. None of them gave any effect at the galvanometer, except the fourth and fifth, and these were alike in their results, and were dependent for them on their ordinary magnetic property. 2696. Some of the expressions I have used may seem to imply, that, when employing the copper and other cores, I imagine that currents are first induced in them by the MDCCCL. dominant magnet, and that these induce the currents which are observed in the experimental helix. Whether the cores act directly on the experimental helix or indirectly through their influence on the dominant magnet, is a very interesting question, and I have found it difficult to select expressions, though I wished to do so, which should not in some degree prejudge that question. It seems to me probable, that the cores act indirectly on the helix, and that their immediate action is altogether directed towards the dominant magnet, which, whether they consist of magnetic or diamagnetic metals, raises them into power either permanently or transiently, and has their power for that time directed towards it. Before the core moves to approach the magnet, the magnet and experimental helix are in close relation; and the latter is situated in the intense field of magnetic force which belongs to the pole of the former. If the core be iron, as it approaches the magnet it causes a strong convergence and concentration of the lines of magnetic force upon itself; and these, as they so converge, passing through the helix and across its convolutions, are competent to produce the currents in it which are obtained (2653, 2668.). As the iron retreats these lines of force diverge, and again crossing the line of the wire in the helix in a contrary direction to their former course, produce a contrary current. It does not seem necessary, in viewing the action of the iron core, to suppose any direct action of it on the helix, or
any other action than this which it exerts upon the lines of force of the magnet. In such a case its action upon the helix would be indirect. 2697. Then, by all parity of reasoning, when a copper core enters the helix its action upon it should be indirect also. For the currents which are produced in it are caused by the direct influence of the magnet, and must react equivalently upon it. This they do, and because of their direction and known action, they will cause the lines of force of the magnet to diverge. As the core diminishes in its velocity of motion, or comes to rest, the currents in it will cease, and then the lines of force will converge; and this divergence and convergence, or passage in two directions across the wire of the experimental helix, is sufficient to produce the two currents which are obtained in the advance of the core towards the dominant magnet (2671, 2673.). A corresponding effect in the contrary direction is produced by the retreat of the core. 2698. On the idea that the actions of the core were not of this kind, but more directly upon the helix, I interposed substances between the core and the helix during the times of the experiment. A thick copper cylinder 2.2 inches long, 0.7 of an inch external diameter, and 0.1 of an inch internal diameter, and consequently 0.3 of an inch thick in the sides, was placed in the experimental helix, and an iron wire core (2668.) used in the apparatus. Still, whatever the form of the experiment, the kind and amount of effect produced were the same as if the copper were away, and either glass or air in its place. When the dominant magnet was removed and the wire core made a magnet, the same results were produced. 2699. Another copper lining, being a cylinder 2.5 inches long, 1 inch in external diameter, and one-eighth of an inch in thickness, was placed in the experimental helix, and cores of silver and copper five-eighths of an inch in thickness, employed as before, with the best condition of the commutator (2675.): the effects, with and without the copper, or with and without the glass, were absolutely the same (2698.). 2700. There can be no doubt that the copper linings, when in place, were full of currents at the time of action, and that when away no such currents would exist in the air or glass replacing them. There is also full reason to admit, that the divergence and convergence of the magnetic lines of force supposed above (2697.) would satisfactorily account for such currents in them, supposing the indirect action of the cores were assumed. If that supposition be rejected, then it seems to me that the whole of the bodies present, the magnet, the helix, the core, the copper lining, or the air or glass which replaces it, must all be in a state of tension, each part acting on every other part, being in what I have occasionally elsewhere imagined as the electro-tonic state (1729.). 2701. The advance of the copper makes the lines of magnetic force diverge, or, so to say, drives them before it (2697.). No doubt there is reaction upon the advancing copper, and the production of currents in it in such a direction as makes them competent, if continued, to continue the divergence. But it does not seem logical to say, that the currents which the lines of force cause in the copper, are the cause of the divergence of the lines of force. It seems to me, rather, that the lines of force are, so to say, diverged, or bent outward by the advancing copper (or by a connected wire moving across lines of force in any other form of the experiments), and that the reaction of the lines of force upon the forces in the particles of the copper cause them to be resolved into a current, by which the resistance is discharged and removed, and the line of force returns to its place. I attach no other meaning to the words line of force than that which I have given on a former occasion (2149.). Royal Institution, 14 Dec. 1849. Plan of the Apparatus employed in Dr. FARADAY'S Researches, Series XXIII. p. 172. a, b, c frame board; d, d, d wooden lever, of which e is the axis, f the crank-wheel, and g the great wheel with its handle h; i the bar connecting the crank-wheel and lever; k a cylinder or core of metal to be submitted to experiment; l the rod connecting it with the lever; m the helix of the electro-magnet; n the iron core, and o the exciting battery; p the experimental helix; q the galvanometer, 20 feet from the electro-magnet; r the commutator; r the connecting wires; r springs of brass or copper; r a copper rod connecting the two arms of the lever, to give strength. The plan is to a scale of one-fifteenth: the part at the electro-magnet and experimental helix is in section; the further description is in paragraphs 2643, 2644, 2645 and 2648 of the Experimental Researches.